iT邦幫忙

2024 iThome 鐵人賽

DAY 4
0
自我挑戰組

與 AI 共舞:打造更高效的日常系列 第 4

AI 輔助閱讀:如何讓 AI 成為你的學習夥伴

  • 分享至 

  • xImage
  •  

本文內容係透過 Whisper 語音辨識技術將錄音檔案轉錄為文字稿,再經由大型語言模型(LLM)進行語意理解與重新詮釋,最後由人工微調潤飾而成。

引言

在當今資訊爆炸的時代,知識的獲取與吸收變得至關重要。AI 技術的蓬勃發展為我們提供了一種強而有力的學習利器。本文將深入探討如何利用 AI 技術來輔助學習,特別是著重於如何透過 AI 與書籍、論文以及網路資訊進行互動對話,進而提升學習效率。藉由與 AI 的互動,我們能夠迅速理解複雜概念、獲得個人化的知識闡釋,甚至激發全新的思考方向。

本文將剖析幾種主流的 AI 解決方案,並分析其各自的優缺點,為讀者提供更清晰的選擇方向。

AI 輔助學習的核心技術

檢索增強生成(RAG)架構

在 AI 領域中,RAG 是一種常用的技術架構,它使 AI 模型能夠在生成文本時參考外部知識庫。這種方法的優勢在於能夠根據特定資料提供精確的答案,提升回答的準確性。然而,由於 RAG 只擷取部分相關資料,因此可能無法完整捕捉資料的全貌,導致缺乏整體脈絡。

  • 優點
    • 精準回答:可根據特定資料來源提供精準的答案。
    • 資源效率:降低運算資源的消耗,提升處理效率。
    • 易於維護:外部知識庫易於更新和維護,確保資訊的即時性。
  • 缺點
    • 脈絡掌握不足:可能無法完整捕捉資料的全貌,導致回答缺乏整體脈絡。
    • 資訊覆蓋範圍有限:過度依賴檢索結果,可能忽略其他潛在的相關資訊。
    • 複雜問題處理能力較弱:在處理複雜或多面向問題時,可能難以整合多個資料來源的資訊。

全文上下文架構

與 RAG 不同,全文上下文架構將整份文件(例如書籍或論文)作為輸入提供給 AI 模型。這種做法能夠保留完整的上下文資訊,使模型能夠進行更全面的分析和討論,生成更具深度和廣度的文本。然而,處理大量的文件資料需要消耗大量的計算資源,因此成本也相對較高,在實際應用中需要考量成本效益。

  • 優點
    • 完整脈絡理解:保留資料的完整脈絡,有助於模型更全面地理解資訊。
    • 深度分析能力:能夠進行更深入的分析和討論,提供更具洞察力的見解。
    • 提升自主學習能力:減少對外部知識庫的依賴,提升模型的自主學習能力。
  • 缺點
    • 資源需求高:需要大量的運算資源和記憶體,成本較高。
    • 處理速度慢:處理速度較慢,不適合需要快速回應的應用場景。
    • 文本長度限制:難以處理超長文本,可能會遇到效能瓶頸。

主流 AI 工具比較

現今市場上有許多 AI 工具可協助我們提升學習效率,以下列舉幾項本人實際使用過的主流解決方案:

1. OpenAI 的 ChatGPT(GPTs)

ChatGPT 的 GPTs 功能允許使用者上傳文件建立知識庫(knowledge base),並透過 RAG 技術提取相關資訊回答問題。

  • 限制:每個 GPT 最多可附加 20 個文件,每個文件大小上限為 512MB 或 200 萬個 token。
  • 優點:使用簡易,可快速獲取特定問題的答案。
  • 缺點:可能缺乏對整體內容的全面理解,無法提供更深入的分析。

2. Anthropic 的 Claude Projects

Claude Projects 可將整個文檔納入上下文,提供更完整的知識庫體驗。

  • 限制:處理大型文件會大幅增加 token 消耗,影響對話次數和效率。
  • 優點:能夠處理完整文檔,保留整體內容的脈絡,提供更精準的回答。
  • 缺點:每次對話都需要重新讀取整個文檔,token 消耗量大,可能影響使用成本(prompt caching 技術應可有效改善此問題)。

3. Google 的 NotebookLM

NotebookLM 採用全文上下文方法處理知識庫,類似 Claude Project,但提供更多創新功能。

  • 限制:單一文檔目前最多可處理 50 萬字的內容。
  • 優點:Notebook Guide 提供 Timeline 生成、Audio Overview 等功能,提升知識庫的應用價值。
  • 缺點:目前仍在測試階段,功能和穩定性可能存在限制。

4. AnythingLLM

AnythingLLM 是一款基於 RAG 技術的本地知識庫解決方案。

  • 優點:可依需求自定義配置,具備高度私密性,無需擔憂數據外洩風險。
  • 缺點:處理能力受限於本地硬體設備,可能無法處理大型知識庫。

實際應用案例

為了比較這些工具的效果,我進行了一個小實驗,將《Harry Potter and the Sorcerer's Stone》的原文小說上傳到各個平台,並提出一些問題來測試它們的能力。

測試平臺:

  • 雲端服務平台
    • Anthropic Claude Projects
    • Google NotebookLM
  • 本地端部署環境
    • AnythingLLM
      • LLM:GPT-4o mini
      • 向量資料庫:LanceDB
      • 嵌入模型:AnythingLLM Embedder

簡單問題測試

  • 問題:What is the core material of Harry’s wand?(哈利的魔杖的核心材料是什麼?)

不論是 Google NotebookLM、Claude Project 和 AnythingLLM 都能正確回答是鳳凰尾羽( phoenix tail feather),並指出相關的文本段落。

Anthropic Claude Projects
According to the book, Harry's wand has a phoenix feather core. Specifically, when Harry visits Ollivander's wand shop, Mr. Ollivander tells him:
"I remember every wand I've ever sold, Mr. Potter. Every single wand. It so happens that the phoenix whose tail feather is in your wand, gave another feather — just one other. It is very curious indeed that you should be destined for this wand when its brother — why, its brother gave you that scar."
So Harry's wand contains a phoenix tail feather as its magical core.
Google NotebookLM
Harry's wand contains a **phoenix feather** at its core. Wands from Ollivanders, where Harry gets his wand, all contain powerful magical substances at their core. According to the wandmaker, Mr. Ollivander, these substances are usually **unicorn hairs, phoenix tail feathers, and the heartstrings of dragons**. Mr. Ollivander explains that no two Ollivander wands are the same because no two magical creatures are exactly alike.
AnythingLLM
The core material of Harry’s wand is phoenix tail feather.

複雜問題測試

  • 問題:Before Harry Potter finally received the acceptance letter from Hogwarts, how many times were the letters intercepted?(在哈利波特最終收到霍格華茲的錄取信之前,有多少次信件被截獲?)

Google NotebookLM 和 Claude Project 在資訊擷取方面表現出色,皆能精確描述事件細節,並指出書中雖未明確提及次數,但透過多個情節佐證。相較之下,AnythingLLM 僅擷取部分資訊,導致回覆相對簡略。

Anthropic Claude Projects
Based on the details provided in the text, there were multiple attempts to deliver Harry's Hogwarts acceptance letter before he finally received it:

1. The first letter arrived in the regular mail, but Uncle Vernon destroyed it.

2. More letters started arriving, pushed under the door and through cracks.

3. On Friday, twelve letters arrived for Harry. 

4. On Saturday, twenty-four letters arrived hidden inside eggs.

5. On Sunday, dozens of letters came flying out of the fireplace.

After all these failed attempts, Hagrid finally delivered the letter to Harry in person at the hut on the rock.

While an exact number isn't given, the text indicates there were many attempts over several days, with increasing numbers of letters each time. The Dursleys went to great lengths to prevent Harry from receiving the letter, including nailing the mail slot shut and fleeing to the remote hut. So there were likely dozens, if not hundreds, of intercepted letters before Harry finally got to read his Hogwarts acceptance.
Google NotebookLM
While the excerpts from *Harry Potter and the Sorcerer's Stone* make it clear that Uncle Vernon intercepts multiple Hogwarts letters addressed to Harry, the exact number of intercepted letters is **never explicitly stated** in the text.

However, the provided excerpts offer a glimpse into the escalating series of events surrounding the arrival and interception of these letters:

- **The First Letter:** When the very first letter arrives, Uncle Vernon appears to intercept and destroy it without hesitation, telling Harry it was simply a mistake: “[Where’s my letter?]” said Harry, the moment Uncle Vernon had squeezed through the door. “Who’s writing to me?” / “No one. It was addressed to you by mistake,” said Uncle Vernon shortly. “I have burned it.”
- **Increasing Quantity and Persistence:**  The narrative emphasizes how the number of letters increases with each passing day, along with the increasingly creative and determined methods employed to deliver them. For example, on Friday, twelve letters arrive, followed by twenty-four letters hidden in eggs on Saturday. Eventually, the letters even resort to flying down the chimney: "On Friday, no less than twelve letters arrived for Harry… On Saturday, things began to get out of hand. Twenty-four letters to Harry found their way into the house… Something came whizzing down the kitchen chimney as he spoke and caught him sharply on the back of the head. Next moment, thirty or forty letters came pelting out of the fireplace like bullets."
- **Uncle Vernon's Desperation:** Uncle Vernon's attempts to prevent Harry from receiving these letters become increasingly frantic. He resorts to nailing up the mail slot, boarding up the doors, and eventually fleeing the house entirely to escape the relentless influx of Hogwarts correspondence:  "After burning all the letters, he got out a hammer and nails and boarded up the cracks around the front and back doors so no one could go out… “That does it,” said Uncle Vernon, trying to speak calmly but pulling great tufts out of his mustache at the same time. “I want you all back here in five minutes ready to leave. We’re going away. Just pack some clothes. No arguments!”

While the text does not offer a specific count, these excerpts show that **many letters** are sent to Harry, with Uncle Vernon intercepting each one until Hagrid arrives at the secluded island to personally deliver Harry's acceptance letter. This ultimately proves futile, as the magic of Hogwarts, and Harry's destiny, cannot be denied.
AnythingLLM
The letters were intercepted multiple times before Harry received his acceptance letter; specifically, there were at least twelve letters that arrived for him, which were all intercepted by the Dursleys. Additionally, Uncle Vernon burned some of the letters and took extreme measures to prevent any further delivery.

特殊功能:Google NotebookLM 的 Timeline 和 Audio Overview

Google NotebookLM 的 Notebook Guide 具備多項創新功能,能有效提升閱讀效率並加深讀者對書籍內容的理解。例如,它可以自動生成 Timeline 和 Study Guide,幫助讀者快速掌握書籍架構和重點。此外,它還提供 Audio Overview 功能,將書籍內容轉化為 Podcast 形式的音頻檔案,由兩位 AI 主持人進行深入剖析,方便讀者利用碎片化時間吸收知識。

透過這些功能,讀者可以快速了解書籍概要,並判斷是否值得投入時間深入閱讀。我已將 Audio Overview 的範例上傳至 SoundCloud,讀者可以參考看看實際效果。

使用 AI 輔助學習的實用技巧

以下將介紹幾項實用的 AI 學習技巧,幫助在學習之路上事半功倍:

  1. 知識點精煉:藉由 AI 技術萃取各章節的關鍵知識點,形成簡潔易懂的摘要,提升學習效率。
  2. 學習障礙排除:利用 AI 答疑功能,協助學習者克服學習過程中的疑問和障礙。
  3. 資源優化配置:使用全文上下文架構的 AI 解決方案時,透過批次提問的方式,優化 token 資源的使用。
  4. 主體學習意識:AI 提供的答案僅作為參考依據,學習者應保持獨立思考的能力,並將 AI 作為輔助學習的工具。

結語

AI 輔助學習工具為我們開啟了全新的學習方式。無論是 RAG 技術還是全文上下文架構,都有其獨特的優勢。選擇適合自己需求的工具,並善用這些 AI 功能,可以大大提升學習效率和深度。然而,我們也要記住,AI 只是輔助工具,真正的學習和理解仍需仰賴學習者自身的投入和批判性思考。

隨著技術的持續發展,我們預期未來將湧現更多創新的 AI 學習輔助工具。讓我們積極擁抱這些新技術,並在保持獨立思考能力的同時,充分利用 AI 的潛力,最大化我們的學習成果。


上一篇
運用 AI 輔助會議記錄:提升工作效率的實用指南
下一篇
運用 Dify 打造 AI 助手:簡化日常工作流程
系列文
與 AI 共舞:打造更高效的日常30
圖片
  直播研討會
圖片
{{ item.channelVendor }} {{ item.webinarstarted }} |
{{ formatDate(item.duration) }}
直播中

尚未有邦友留言

立即登入留言